\(\int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [247]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 108 \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {3 \csc (c+d x)}{a^3 d}-\frac {\csc ^2(c+d x)}{2 a^3 d}+\frac {6 \log (\sin (c+d x))}{a^3 d}-\frac {6 \log (1+\sin (c+d x))}{a^3 d}+\frac {1}{2 a d (a+a \sin (c+d x))^2}+\frac {3}{d \left (a^3+a^3 \sin (c+d x)\right )} \]

[Out]

3*csc(d*x+c)/a^3/d-1/2*csc(d*x+c)^2/a^3/d+6*ln(sin(d*x+c))/a^3/d-6*ln(1+sin(d*x+c))/a^3/d+1/2/a/d/(a+a*sin(d*x
+c))^2+3/d/(a^3+a^3*sin(d*x+c))

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2912, 12, 46} \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {3}{d \left (a^3 \sin (c+d x)+a^3\right )}-\frac {\csc ^2(c+d x)}{2 a^3 d}+\frac {3 \csc (c+d x)}{a^3 d}+\frac {6 \log (\sin (c+d x))}{a^3 d}-\frac {6 \log (\sin (c+d x)+1)}{a^3 d}+\frac {1}{2 a d (a \sin (c+d x)+a)^2} \]

[In]

Int[(Cot[c + d*x]*Csc[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(3*Csc[c + d*x])/(a^3*d) - Csc[c + d*x]^2/(2*a^3*d) + (6*Log[Sin[c + d*x]])/(a^3*d) - (6*Log[1 + Sin[c + d*x]]
)/(a^3*d) + 1/(2*a*d*(a + a*Sin[c + d*x])^2) + 3/(d*(a^3 + a^3*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a^3}{x^3 (a+x)^3} \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {a^2 \text {Subst}\left (\int \frac {1}{x^3 (a+x)^3} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^2 \text {Subst}\left (\int \left (\frac {1}{a^3 x^3}-\frac {3}{a^4 x^2}+\frac {6}{a^5 x}-\frac {1}{a^3 (a+x)^3}-\frac {3}{a^4 (a+x)^2}-\frac {6}{a^5 (a+x)}\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {3 \csc (c+d x)}{a^3 d}-\frac {\csc ^2(c+d x)}{2 a^3 d}+\frac {6 \log (\sin (c+d x))}{a^3 d}-\frac {6 \log (1+\sin (c+d x))}{a^3 d}+\frac {1}{2 a d (a+a \sin (c+d x))^2}+\frac {3}{d \left (a^3+a^3 \sin (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.66 \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {6 \csc (c+d x)-\csc ^2(c+d x)+12 \log (\sin (c+d x))-12 \log (1+\sin (c+d x))+\frac {1}{(1+\sin (c+d x))^2}+\frac {6}{1+\sin (c+d x)}}{2 a^3 d} \]

[In]

Integrate[(Cot[c + d*x]*Csc[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(6*Csc[c + d*x] - Csc[c + d*x]^2 + 12*Log[Sin[c + d*x]] - 12*Log[1 + Sin[c + d*x]] + (1 + Sin[c + d*x])^(-2) +
 6/(1 + Sin[c + d*x]))/(2*a^3*d)

Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.58

method result size
derivativedivides \(-\frac {\frac {\left (\csc ^{2}\left (d x +c \right )\right )}{2}-3 \csc \left (d x +c \right )+\frac {4}{\csc \left (d x +c \right )+1}-\frac {1}{2 \left (\csc \left (d x +c \right )+1\right )^{2}}+6 \ln \left (\csc \left (d x +c \right )+1\right )}{d \,a^{3}}\) \(63\)
default \(-\frac {\frac {\left (\csc ^{2}\left (d x +c \right )\right )}{2}-3 \csc \left (d x +c \right )+\frac {4}{\csc \left (d x +c \right )+1}-\frac {1}{2 \left (\csc \left (d x +c \right )+1\right )^{2}}+6 \ln \left (\csc \left (d x +c \right )+1\right )}{d \,a^{3}}\) \(63\)
risch \(\frac {4 i \left (9 i {\mathrm e}^{6 i \left (d x +c \right )}+3 \,{\mathrm e}^{7 i \left (d x +c \right )}-16 i {\mathrm e}^{4 i \left (d x +c \right )}-13 \,{\mathrm e}^{5 i \left (d x +c \right )}+9 i {\mathrm e}^{2 i \left (d x +c \right )}+13 \,{\mathrm e}^{3 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{\left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{4} d \,a^{3}}-\frac {12 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d \,a^{3}}+\frac {6 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d \,a^{3}}\) \(160\)
parallelrisch \(\frac {\left (-48 \cos \left (2 d x +2 c \right )+192 \sin \left (d x +c \right )+144\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (24 \cos \left (2 d x +2 c \right )-96 \sin \left (d x +c \right )-72\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-136 \cos \left (d x +c \right )+34 \cos \left (2 d x +2 c \right )+106\right ) \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-88 \cos \left (d x +c \right )+88\right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (\left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-4\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-8 \sec \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3} \left (-3+\cos \left (2 d x +2 c \right )-4 \sin \left (d x +c \right )\right )}\) \(195\)
norman \(\frac {-\frac {24 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {24 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {1}{8 a d}+\frac {7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {7 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}-\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}-\frac {251 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}-\frac {251 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}-\frac {12 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{3}}\) \(208\)

[In]

int(cos(d*x+c)*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-1/d/a^3*(1/2*csc(d*x+c)^2-3*csc(d*x+c)+4/(csc(d*x+c)+1)-1/2/(csc(d*x+c)+1)^2+6*ln(csc(d*x+c)+1))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.81 \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {18 \, \cos \left (d x + c\right )^{2} - 12 \, {\left (\cos \left (d x + c\right )^{4} - 3 \, \cos \left (d x + c\right )^{2} - 2 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) + 2\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) + 12 \, {\left (\cos \left (d x + c\right )^{4} - 3 \, \cos \left (d x + c\right )^{2} - 2 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) + 2\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 4 \, {\left (3 \, \cos \left (d x + c\right )^{2} - 4\right )} \sin \left (d x + c\right ) - 17}{2 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} - 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 2 \, a^{3} d - 2 \, {\left (a^{3} d \cos \left (d x + c\right )^{2} - a^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/2*(18*cos(d*x + c)^2 - 12*(cos(d*x + c)^4 - 3*cos(d*x + c)^2 - 2*(cos(d*x + c)^2 - 1)*sin(d*x + c) + 2)*log
(1/2*sin(d*x + c)) + 12*(cos(d*x + c)^4 - 3*cos(d*x + c)^2 - 2*(cos(d*x + c)^2 - 1)*sin(d*x + c) + 2)*log(sin(
d*x + c) + 1) + 4*(3*cos(d*x + c)^2 - 4)*sin(d*x + c) - 17)/(a^3*d*cos(d*x + c)^4 - 3*a^3*d*cos(d*x + c)^2 + 2
*a^3*d - 2*(a^3*d*cos(d*x + c)^2 - a^3*d)*sin(d*x + c))

Sympy [F]

\[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\int \frac {\cos {\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}}{\sin ^{3}{\left (c + d x \right )} + 3 \sin ^{2}{\left (c + d x \right )} + 3 \sin {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)**3/(a+a*sin(d*x+c))**3,x)

[Out]

Integral(cos(c + d*x)*csc(c + d*x)**3/(sin(c + d*x)**3 + 3*sin(c + d*x)**2 + 3*sin(c + d*x) + 1), x)/a**3

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.95 \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {12 \, \sin \left (d x + c\right )^{3} + 18 \, \sin \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right ) - 1}{a^{3} \sin \left (d x + c\right )^{4} + 2 \, a^{3} \sin \left (d x + c\right )^{3} + a^{3} \sin \left (d x + c\right )^{2}} - \frac {12 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{3}} + \frac {12 \, \log \left (\sin \left (d x + c\right )\right )}{a^{3}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*((12*sin(d*x + c)^3 + 18*sin(d*x + c)^2 + 4*sin(d*x + c) - 1)/(a^3*sin(d*x + c)^4 + 2*a^3*sin(d*x + c)^3 +
 a^3*sin(d*x + c)^2) - 12*log(sin(d*x + c) + 1)/a^3 + 12*log(sin(d*x + c))/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.80 \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {12 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a^{3}} - \frac {12 \, \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a^{3}} - \frac {12 \, \sin \left (d x + c\right )^{3} + 18 \, \sin \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right ) - 1}{{\left (\sin \left (d x + c\right )^{2} + \sin \left (d x + c\right )\right )}^{2} a^{3}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*(12*log(abs(sin(d*x + c) + 1))/a^3 - 12*log(abs(sin(d*x + c)))/a^3 - (12*sin(d*x + c)^3 + 18*sin(d*x + c)
^2 + 4*sin(d*x + c) - 1)/((sin(d*x + c)^2 + sin(d*x + c))^2*a^3))/d

Mupad [B] (verification not implemented)

Time = 10.27 (sec) , antiderivative size = 227, normalized size of antiderivative = 2.10 \[ \int \frac {\cot (c+d x) \csc ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {6\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^3\,d}+\frac {-26\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {65\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+21\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{2}}{d\,\left (4\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+16\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+24\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+16\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+4\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {12\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{a^3\,d}+\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^3\,d} \]

[In]

int(cos(c + d*x)/(sin(c + d*x)^3*(a + a*sin(c + d*x))^3),x)

[Out]

(6*log(tan(c/2 + (d*x)/2)))/(a^3*d) - tan(c/2 + (d*x)/2)^2/(8*a^3*d) + (4*tan(c/2 + (d*x)/2) + 21*tan(c/2 + (d
*x)/2)^2 + 2*tan(c/2 + (d*x)/2)^3 - (65*tan(c/2 + (d*x)/2)^4)/2 - 26*tan(c/2 + (d*x)/2)^5 - 1/2)/(d*(4*a^3*tan
(c/2 + (d*x)/2)^2 + 16*a^3*tan(c/2 + (d*x)/2)^3 + 24*a^3*tan(c/2 + (d*x)/2)^4 + 16*a^3*tan(c/2 + (d*x)/2)^5 +
4*a^3*tan(c/2 + (d*x)/2)^6)) - (12*log(tan(c/2 + (d*x)/2) + 1))/(a^3*d) + (3*tan(c/2 + (d*x)/2))/(2*a^3*d)